Software may help mitigate the side effects of cancer treatments
AI-based image analysis detects early organ damage

In their latest study, researchers from the departments of radiology and nuclear medicine at TUM University Hospital evaluated data from 121 patients undergoing treatment for prostate cancer with lutetium-177 PSMA. This radioligand therapy—a targeted form of nuclear medicine—is relatively new and shows promise for treating specific tumor types. However, one potential side effect is a decline in kidney function over the course of treatment.
“In an earlier study, we found that patients whose kidney function worsened after lutetium-177 PSMA therapy showed changes in kidney structure,” says lead author Dr. Lisa Steinhelfer. “Since it's not feasible to routinely take tissue samples, we wanted to explore whether these changes could be detected using less invasive methods.”
Kidney volume may serve as a biomarker
Dr. Steinhelfer and her colleagues opted for an approach that does not place any additional burden on patients. CT scans and blood tests are part of standard cancer care in order to monitor treatment progress. The Munich researchers examined various indicators in these routinely collected data to find early signs of kidney damage.
While factors such as kidney length or patient age did not yield reliable predictions, changes in kidney volume proved to be a strong signal: when kidney volume decreased by 10% or more within six months of starting treatment, there was a high likelihood that kidney function would decline significantly within an additional six months.
“These changes in kidney volume are very subtle. They can easily be missed during routine image assessments because clinicians are mainly focused on tracking tumors and other critical findings,” explains Prof. Matthias Eiber, one of the study’s senior authors, alongside Prof. Rickmer Braren. “In contrast, image analysis algorithms—if properly trained—can reliably detect even these minor changes,” adds Dr. Friederike Jungmann, who shares first authorship with Dr. Steinhelfer.
Method could be useful across multiple cancer therapies
“If it becomes clear that a patient is at increased risk of kidney impairment after six months of treatment, both the number of therapy cycles and the dosage can be individually adjusted,” explains Dr. Steinhelfer. “This would allow for a more personalized treatment approach.” TUM University Hospital is currently involved in two prospective studies further evaluating this strategy.
In a previous study, Dr. Steinhelfer’s team also demonstrated that changes in spleen size can serve as an early warning sign for disruptions in blood cell production. “Many cancer therapies can affect liver function or the hematopoietic system,” she notes. “I believe our approach could help identify a wide range of treatment-related side effects much earlier than currently possible,” says Lisa Steinhelfer.
-
L. Steinhelfer, F. Jungmann et al. “Automated CT Measurement of Total Kidney Volume for Predicting Renal Function Decline after 177Lu Prostate-specific Membrane Antigen–I&T Radioligand Therapy“. Radiology (2025). DOI: 10.1148/radiol.240427
-
L. Steinhelfer, F. Jungmann et al. “Spleen Volume Reduction Is a Reliable and Independent Biomarker for Long-Term Risk of Leukopenia Development in Peptide Receptor Radionuclide Therapy”.Journal of Nuclear Medicine (2024). DOI: doi.org/10.2967/jnumed.123.267098
-
L. Steinhelfer, L. Lunger et al. “Long-Term Nephrotoxicity of 177Lu-PSMA Radioligand Therapy”. Journal of Nuclear Medicine (2024). DOI: 10.2967/jnumed.123.265986
Technical University of Munich
Corporate Communications Center
- Paul Hellmich
- paul.hellmich @tum.de
- presse @tum.de
- Teamwebsite
Contacts to this article:
Dr. Lisa Steinhelfer
TUM University Hospital
Technical University of Munich
Department of Diagnostic and Interventional Radiology
Tel. +49 89 4140-7064
lisa.steinhelfer @tum.de
https://radiologie.mri.tum.de/