Press releases
Utilizing substantial genetic potential for higher yields
More wheat for global food security
In terms of cultivated cropland, wheat is one of the most important grain varieties and plays a significant role as a basic food. It is grown in over hundred countries. However, the supply of wheat is inadequate and many developing and emerging countries are highly dependent on imports. Senthold Asseng, Professor of Digital Agriculture at TUM, has been working with international research teams to study scenarios and models that could lead the way out of the wheat crisis.
Wheat crisis threatens food security and global peace
Fluctuations in prices on global markets and in harvests have a major impact on the nutrition situation for many people worldwide. These supply bottlenecks have negative effects on the quality of life of the population that can undermine social stability. “The current global wheat crisis shows how important wheat is for the world. In many countries food security is linked to national security, civil unrest, migration and even war,” says Prof. Asseng, the director of the World Agricultural Systems Center - Hans Eisenmann Forum for Agricultural Sciences at TUM in Weihenstephan. “Wheat yields are stagnating in many parts of the world. Especially with the rising global population, steady increases in yields will be needed over the coming decades to secure global food needs,” warns Asseng.
Finding and utilizing hidden breeding resources
Prof. Asseng is working intensively on potential increases in wheat yields. As a scientist, his work is not limited to theoretical calculations and models. His research also engages directly with nature through field experiments, including work with regional wheat varieties.
“We are approaching the biophysical limits of wheat yields. So we need to understand the functions of crops to boost yields further,” says the scientist. He firmly believes that the genetic resources of wheat are considerable. In his experiments, he has identified the unused genetic resources in this cultivated plant with the potential to increase yields around the world. He speaks of a genetic yield gap of 51 percent. The goal is to mobilize this breeding gap. This can be done by targeted breeding that will utilize the yield potential of wheat and thus lead to richer harvests.
Genetics are important, but only an interdisciplinary approach will achieve the goal
However, Prof. Asseng is certain: “Genetics alone cannot solve the global nutrition problems. We can achieve this only with an interdisciplinary approach through the application of genetics combined with soil and climate science as well as research into cultivated plants.”
The use of advanced modern breeding instruments and the continual improvement of agricultural crop production through optimized plant and soil management will achieve the urgently needed increases in the global wheat harvest. "This can then bring about an effective solution for an adequate worldwide supply of food in the future," says Asseng.
Senapati, N., Semenov, M.A., Halford, N.G. et al. Global wheat production could benefit from closing the genetic yield gap. Nat Food (2022). https://doi.org/10.1038/s43016-022-00540-9
Reynolds, M.P., Slafer, G.A., Foulkes, J.M. et al. A wiring diagram to integrate physiological traits of wheat yield potential. Nat Food 3, 318–324 (2022). https://doi.org/10.1038/s43016-022-00512-z
Prof. Senthold Asseng is the director of the World Agricultural Systems Center - Hans Eisenmann Forum (HEF) for Agricultural Sciences, a Corporate Research Center of TUM.
Technical University of Munich
Corporate Communications Center
- Dagmar Wagner
- presse @tum.de
- Teamwebsite
Contacts to this article:
Prof. Senthold Asseng
Technical University of Munich (TUM)
Director of the World Agricultural Systems Center
Hans Eisenmann Forum for Agricultural Sciences
Professorship of Digital Agriculture
Liesel-Beckmann-Str. 2
85354 Freising
Tel: +49 (0) 8161 71 2900
senthold.asseng @tum.de