Our Mission Statement

Two men and one woman in front of laptops talking.

Our Vision

As a leading entrepreneurial university, we are a site of global knowledge exchange, shaping a sustainable future through talent, excellence and responsibility.

Our Mission

We inspire, promote and develop talents in all their diversity to become responsible, broad-minded individuals. We empower them to shape the progress of innovation for people, nature, and society with scientific excellence and technological expertise, with entrepreneurial courage and sensitivity to social and political issues, as well as a lifelong commitment to learning.

Our Core Values

Our core values form the foundation of our relationships with one another and with our cooperation partners:

  • Excellence: We cultivate an environment of curiosity, creativity and unconventional thinking across the disciplines and set the highest standards of performance in research, teaching, and innovation.
  • Entrepreneurial Mindset: We question the consequences of our actions, take on new challenges proactively, and continually enhance our working methods. We commit ourselves to socially reflected innovations and promote their commercial application by founding sustainable technology spin-offs.
  • Integrity: We draw our success from an inclusive community of talents from different backgrounds, cultures, ideas and perspectives. We act with respect for others and transparency in accordance with our shared values.
  • Collegiality: We respect and inspire one another in a vibrant culture of university community. We cultivate the academic, economic and social partnerships that make TUM a site of global knowledge exchange.
  • Sustainability and Resilience: We learn from our diverse experiences and see in persistent change the opportunity for the sustainable development of science, ecology, economy and society – from this we draw inspiration, motivation and resolve.

Our Guiding Principles

Governing Documents

An overview of central codes and regulations by which we shape research and innovation, teaching, and our governance as a top and modern university of international standing.

Governing Documents

Compliance

The TUM Compliance Office ensures the integrity and transparency of research, teaching and innovation based on the TUM Code of Conduct, the TUM Respect Guide, and the Statute on Safeguarding Good Academic Practice.

TUM Compliance Office

Image brochure "Global Hub of Knowledge Exchange"

We show who we are, what will drive us in the future and what makes us tick, through exciting research projects, insights into the future organizational structure and with stories of visionaries, founders and pioneers.

Explore now

News

  • 5/4/2017

Analysis of Wi-Fi data generates 3D images of the vicinity

Holography with the Wi-Fi-router

Scientists at the Technical University of Munich (TUM) have developed a holographic imaging process that depicts the radiation of a Wi-Fi transmitter to generate three-dimensional images of the surrounding environment. Industrial facility operators could use this to track objects as they move through the production hall.

A cross made of aluminum foil between the viewer and the WLAN-router can easily be reconstructed from the WLAN-hologram as can be seen in the inserted picture (image: Friedemann Reinhard/Philipp Holl / TUM)
A cross made of aluminum foil between the viewer and the WLAN-router can easily be reconstructed from the WLAN-hologram as can be seen in the inserted picture (image: Friedemann Reinhard/Philipp Holl / TUM)

Just like peering through a window, holograms project a seemingly three-dimensional image. While optical holograms require elaborate laser technology, generating holograms with the microwave radiation of a Wi-Fi transmitter requires merely one fixed and one movable antenna, as Dr. Friedenmann Reinhard and Philipp Holl report in the current issue of the renowned scientific journal Physical Review Letters.

“Using this technology, we can generate a three-dimensional image of the space around the Wi-Fi transmitter, as if our eyes could see microwave radiation,” says Friedemann Reinhard, director of the Emmy Noether Research Group for Quantum Sensors at the Walter Schottky Institute of the TU Munich. The researchers envision fields of deployment especially in the domain of industry 4.0 – automated industrial facilities, in which localizing parts and devices is often difficult.

Wi-Fi penetrates walls

Processes that allow the localization of microwave radiation, even through walls, or in which changes in a signal pattern signify the presence of a person already exist. The novelty is that an entire space can be imaged via holographic processing of Wi-Fi or cell phone signals.

“Of course, this raises privacy questions. After all, to a certain degree even encrypted signals transmit an image of their surroundings to the outside world,” says the project leader, Friedemann Reinhard. “However, it is rather unlikely that this process will be used for the view into foreign bedrooms in the near future. For that, you would need to go around the building with a large antenna, which would hardly go unnoticed. There are simpler ways available.”

Centimeter-scale precision

Hitherto, generating images from microwave radiation required special-purpose transmitters with large bandwidths. Using holographic data processing, the very small bandwidths of typical household Wi-Fi transmitters operating in the 2.4 and 5 gigahertz bands were sufficient for the researchers. Even Bluetooth and cell phone signals can be used. The wavelengths of these devices correspond to a spatial resolution of a few centimeters.

“Instead of a using a movable antenna, which measures the image point by point, one can use a larger number of antennas to obtain a video-like image frequency,” says Philipp Holl, who executed the experiments. “Future Wi-Fi frequencies, like the proposed 60 gigahertz IEEE 802.11 standard will allow resolutions down to the millimeter range.”

Looking to the future

Well-known optical methods for image processing can also be deployed in Wi-Fi holography: One example is the dark-field methodology used in microscopy, which improves the recognition of weakly diffracting structures. A further process is white-light holography in which the researchers use the remaining small bandwidth of the Wi-Fi transmitter to eliminate noise from scattered radiation.

The concept of treating microwave holograms like optical images allows the microwave image to be combined with camera images. The additional information extracted from the microwave images can be embedded into the camera image of a smart phone, for example to trace a radio tag attached to a lost item.

But the scientists are just at the beginning of the technological development. For example, research on the transparency of specific materials is lacking. This knowledge would facilitate the development of paint or wall paper translucent to microwaves for privacy protection, while transparent materials could be deployed in factory halls to allow parts to be tracked.

The researchers hope that further advancement of the technology may aid in the recovery of victims buried under an avalanche or a collapsed building. While conventional methods only allow point localization of victims, holographic signal processing could provide a spatial representation of destroyed structures, allowing first responders to navigate around heavy objects and use cavities in the rubble to systematically elucidate the easiest approach to quickly reach victims.

 

The research was funded by the Emmy Noether Program of the German Research Foundation (DFB) and the TUM Junior Fellow Fund.

Publication:

Philipp M. Holl and Friedemann Reinhard: Holography of Wi-fi Radiation.
Physical Review Letters, 05.05.2017 – DOI: 10.1103/PhysRevLett.118.183901
journals.aps.org/prl/abstract/10.1103/PhysRevLett.118.183901

Contact:

Dr. Friedemann Reinhard
Technical University of Munich
Walter Schottky Institute, E24
Am Coulombwall 4, 85748 Garching, Germany
Tel.: +49 89 289 12777 – e-mailweb

Technical University of Munich

Corporate Communications Center

Back to list
HSTS