• 31.1.2012

Neue Anwendungen für Graphen:

Ultraschnelle Photodetektoren und Terahertz-Strahler

Hauchdünn, stabiler als Stahl und vielseitig einsetzbar: das Material Graphen hat zahlreiche interessante Eigenschaften. So ist es derzeit der Star unter den elektrischen Leitern. Photodetektoren auf Graphen-Basis können Lichtsignale oder auch elektrische Signale extrem schnell verarbeiten und weiterleiten. So führt die optische Anregung von Graphen in Pikosekunden (10-12 Sek) zur Entstehung eines Photostroms. Bisher fehlte eine entsprechend schnelle Methode, um Abläufe wie diese in Graphen nachweisen zu können. Professor Alexander Holleitner und Dr. Leonhard Prechtel am Walter Schottky Institut der Technischen Universität München (TUM) ist es nun gelungen, die zeitliche Dynamik des Photostroms messbar zu machen.<b></b>

Ein Graphen-Netz überspannt den Spalt zwischen zwei Elektroden

Graphen wirkt auf den ersten Blick eher schlicht: das Material besteht ausschließlich aus Kohlenstoffatomen, die in einem einschichtigen „Teppich“ angeordnet sind. Doch für Wissenschaftler ist unter anderem die extrem hohe Leitfähigkeit von Graphen besonders reizvoll. Diese Eigenschaft ist unter anderem hilfreich für die Entwicklung von Photodetektoren. Dabei handelt es sich um Bauteile, die Strahlung detektieren und in elektrische Signale umwandeln können.

Mit Hilfe des hoch leitfähigen Graphen arbeiten Wissenschaftler daran, ultraschnelle Photodetektoren zu konstruieren. Allerdings war es bisher nicht möglich, das optische und elektronische Verhalten von Graphen zeitaufgelöst zu bestimmen. Das heißt zu klären, wie lange es von der elektrischen Anregung des Graphen bis zur Generierung des entsprechenden Photostroms dauert.

Dieser Frage widmeten sich Alexander Holleitner und Leonhard Prechtel am Walter Schottky Institut der TU München, zugleich Mitglieder des Exzellenzclusters Nanosystems Initiative Munich (NIM). Die Physiker entwickelten zunächst eine Methode, mit der sie den durch Bestrahlung mit kurzen Laserpulsen entstehenden Photostrom in Graphen-Photodetektoren bis in den Pikosekundenbereich hinein untersuchen können. Damit können sie nun Pulse von einer Länge von 10-12 Sekunden detektieren.

Kern der untersuchten Photodetektoren ist frei tragendes Graphen, das über metallische Kontakte elektronisch in Schaltkreise eingebunden ist. Die zeitliche Dynamik des Photostroms bestimmen die Physiker mit Hilfe von sogenannten koplanaren Streifenleitungen, die sie über ein spezielles zeitaufgelöstes Laser-Spektroskopie-Verfahren auswerten, die Pump-Probe Technik. Hierbei werden mit einem Laserpuls Elektronen im Graphen angeregt und die Dynamik dieses Prozesses mit einem zweiten Laser verfolgt. Auf diese Weise können die Physiker genau nachvollziehen, wie der Photostrom im Graphen erzeugt wird.

Die neue Methode ermöglichte den Wissenschaftlern zeitgleich noch eine weitere Beobachtung: Sie konnten belegen, dass Graphen nach optischer Anregung Strahlung im Terahertz (THz)-Bereich aussendet. Die Frequenz dieser Strahlung liegt zwischen dem Frequenzbereich von Infrarotlicht und Mikrowellenstrahlung. Als Besonderheit besitzt THz-Strahlung Eigenschaften beider angrenzender Bereiche: Sie lässt sich bündeln wie Licht, und durchdringt Materie ähnlich wie elektromagnetische Wellen. Dadurch eignet sie sich beispielsweise zur Materialprüfung, zum Durchleuchten von Paketen oder für medizinische Anwendungen.

Die Arbeit wurde unterstützt aus Mitteln der Deutschen Forschungsgemeinschaft, dem Exzellenzcluster Nanosystems Initiative Munich und des Center for NanoScience (CeNS). An der Publikation wirkten außerdem Physiker der Universität Regensburg, der Eidgenössisch Technischen Hochschule Zürich, der Rice University und der Shinshu University mit.

Originalpublikation:

Time-resolved ultrafast photocurrents and terahertz generation in freely suspended graphene
Leonhard Prechtel, Li Song, Dieter Schuh, Pulickel Ajayan, Werner Wegscheider, Alexander W. Holleitner,
Nature Communications, 31. Januar 2012
Links: DOI: 10.1038/ncomms1656http://www.nature.com/ncomms/index.html

Kontakt:

Prof. Dr. Alexander W. Holleitner
Technische Universität München
Walter Schottky Institut – Zentrum für Nanotechnologie und Nanomaterialien
Am Coulombwall 4a, 85748 Garching, Germany
Tel.: +49 89 289 11575 – Fax: +49 89 289 11600
Email - Internet

Technische Universität München

Corporate Communications Center

HSTS